The Ciliary G-Protein-Coupled Receptor Gpr161 Negatively Regulates the Sonic Hedgehog Pathway via cAMP Signaling

نویسندگان

  • Saikat Mukhopadhyay
  • Xiaohui Wen
  • Navneet Ratti
  • Alexander Loktev
  • Linda Rangell
  • Suzie J. Scales
  • Peter K. Jackson
چکیده

The primary cilium is required for Sonic hedgehog (Shh) signaling in vertebrates. In contrast to mutants affecting ciliary assembly, mutations in the intraflagellar transport complex A (IFT-A) paradoxically cause increased Shh signaling. We previously showed that the IFT-A complex, in addition to its canonical role in retrograde IFT, binds to the tubby-like protein, Tulp3, and recruits it to cilia. Here, we describe a conserved vertebrate G-protein-coupled receptor, Gpr161, which localizes to primary cilia in a Tulp3/IFT-A-dependent manner. Complete loss of Gpr161 in mouse causes midgestation lethality and increased Shh signaling in the neural tube, phenocopying Tulp3/IFT-A mutants. Constitutive Gpr161 activity increases cAMP levels and represses Shh signaling by determining the processing of Gli3 to its repressor form. Conversely, Shh signaling directs Gpr161 to be internalized from cilia, preventing its activity. Thus, Gpr161 defines a morphogenetic pathway coupling protein kinase A activation to Shh signaling during neural tube development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothened determines β-arrestin–mediated removal of the G protein–coupled receptor Gpr161 from the primary cilium

Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G pro...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output.

Ciliary transport is required for ciliogenesis, signal transduction, and trafficking of receptors to the primary cilium. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) have been associated with ciliary dysfunction; however, its role in regulating ciliary phosphoinositides is unknown. Here we report that in neural stem cells, phosphatidylinositol 4-phosphate (PI4P) is found in high...

متن کامل

G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog.

The morphogen Sonic Hedgehog (SHH) patterns tissues during development by directing cell fates in a concentration-dependent manner. The SHH signal is transmitted across the membrane of target cells by the heptahelical transmembrane protein Smoothened (SMO), which activates the GLI family of transcription factors through a mechanism that is undefined in vertebrates. Using CRISPR-edited null alle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2013